NEW STANDARD ACADEMY
 Marks: 60
 Date : 15-07-24
 CLASS : $\mathbf{1 2}^{\mathbf{T H}}$ JEE
 Time: 3 HRS

PHYSICS

1. An infinitely long uniform charge distribution of per unit length λ lies parallel to the y-axis in the $y-z$ plane at $z=$ $\frac{\sqrt{3}}{2}$ a(see Fig.) If the magnitude of the flux of the field through the rectangular surface $A B C D$ lying in the $x-y$ plane with its centre at the origin is $\lambda \mathrm{L} /\left(\mathrm{n} \epsilon_{0}\right)\left(\epsilon_{0}=\right.$ permittivity of free space), then the value of n is

2. A circular disc of radius R carries surface charge density $\sigma(r)=\left(1-\frac{r}{R}\right)$ where σ_{0} is constant and r is the distance from the centre of the disc. Electric flux through a large spherical surface that encloses the charged disc completely is ϕ_{0}. Electric flux through another spherical surface of radius $\frac{R}{4}$ and concentric with the disc is ϕ. Then the ratio $\frac{\phi_{0}}{\phi}$ is.
3. One end of a spring of negligible unstretched length and spring constant k is fixed at the origin $(0,0)$. A point particle of mass m carrying a positive charge q is attached at its other end. The entrie system is kept on a smooth horizontal surface. When a point dipole \vec{p} pointing towards the charge q is fixed at the origin, the spring gets stretched to a length l and attains a new equilibrium positive (see figure below). If the point mass is now displaced slightly by $\Delta l \ll l$ from its equilibrium position and released, it is
found to oscillate at frequency $\frac{1}{\delta} \sqrt{\frac{k}{m}}$ The value of δ is \qquad

4. A charge ' q ' is placed at the centre of the line joining two equal charges ' Q '. The system of the three charges will be in equilibrium if q is equal to
5. Two spheres having same radius and mass are suspended by two strings of equal length from the same point, in such a way that their surface touch each other. On depositing charge $4 \times 10^{-6} \mathrm{C}$ on them they repel each other in such a way that in equilibrium the angle between their strings become 60°. If the distance from the point of suspension to the centre of the sphere is 10 cm . Find the mass of each sphere
6. Two charges $-q$ and $+q$ are located at points $\mathrm{A}(0,0,-\mathrm{a})$ and $\mathrm{B}(0,0$, a) respectively. How much work is done in moving a test charge from point $\mathrm{P}(7,0,0)$ to $\mathrm{Q}(-3,0,0)$?
7. Eight charged water droplets, each with a radius of 1 mm and charge $10^{-9} \mathrm{C}$ coalesce to form a single drop. Calculate potential of bigger drop.
8. n small drops of same size are charged to V volt each. They coalesce to form a bigger drop. Calculate potential of bigger drop.
9. To what potential we must charge an insulated sphere of radius 14 cm so that the surface charge density is equal to $1 \mu \mathrm{Cm}^{-2}$?
10. 6. A short dipole is of electric dipole moment of $4 \times 10^{-9} \mathrm{Cm}$. Determine the electric potential due to the dipole at a
point distance 0.3 m from the centre of dipole situated (a) on the axial line (b) on the equatorial line (c) on a line making an angle of 60° with the dipole axis.

CHEMISTRY

1. Calculate the degree of dissociation of $1.25 \% \mathrm{NaCl}$ aqueous solution which is isotonic with 7.5% aqueous solution of glucose. Percentage given is by mass/volume
2. Phenol associates in benzene to form dimer. A solution containing 20×10^{-3} kg of phenol in 1 kg of benzene has its freezing point depressed by 0.69 K . If K_{f} for benzene is $5.12 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$, what is the degree of association of phenol?
3. Calculate the mass of a non-volatile solute (molar mass $40 \mathrm{~g} \mathrm{~mol}^{-1}$) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
4. A conductivity cell contains two electrodes. The area of each electrode is $10 \mathrm{~cm}^{2}$ and are 1.5 cm apart. Conductivity cell is filled with $\mathrm{N} / 20$ solution of an electrolyte. If the electrodes are exactly half-dipped in the solution, find the equivalent conductivity of the electrolyte. The resistance of the solution determined is 50 ohms.
5. A copper-silver cell is set up. The copper ion concentration in it is 0.10 M . The concentration of silver ion is not known. The cell potential measured 0.422 V . Determine the concentration of silver ion in the cell. (Given $E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=+0.80 \mathrm{~V}, E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=$ +0.34 V)
6. Rate constant for first order reaction is $5.78 \times 10^{-5} \mathrm{sec}^{-1}$. What $\%$ of initial reactant will react in 10 hours?
7. The reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2} \xrightarrow{k_{1}} \mathrm{SO}_{2}+\mathrm{Cl}_{2}$ is a first order reaction with $\mathrm{k}_{1}=2.2 \times 10^{-5}$ sec^{-1} at 575 K . What percentage of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ will get decomposed in 90 minutes when the reaction is carried out at 575 K ?
8. The rate constant at $427^{\circ} \mathrm{C}$ is 2
second ${ }^{-1}$. The activation energy is $129.1 \mathrm{~kJ} / \mathrm{mol}$. Calculate the rate constant at $527^{\circ} \mathrm{C}$
9. E° for $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ couple is much more + ve than for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ Why?
10. (a) Complete the following chemical reactions:
(i) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl} \rightarrow$
(ii) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{3}^{2-}+6 \mathrm{H}^{+} \rightarrow$
(b) How does the colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ change when treated with an alkali?

MATHS

1. Show that the relation in the set $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) R(c, d)$ iff $a^{2}+d^{2}=b^{2}+c^{2}$ for all $a, b, c, d \in N$ is an equivalence relation.
2. Prove that a function $f[0, \infty) \rightarrow$ $[-5, \infty)$ defined as $f(\mathrm{x})=4 \mathrm{x}^{2}+4 \mathrm{x}-5$ is both one -one and onto.
3. Find the domain function :- $\sin ^{-1}\left(x^{2}-4\right)$.
4. Evaluate
$\sin ^{-1}\left(\sin \frac{3 \pi}{4}\right)+\cos ^{-1}\left(\cos \frac{3 \pi}{4}\right)+\tan ^{-1}(1)$
5. If A is a square matrix such that $A^{2}=A$, then find the value of $7 \mathrm{~A}-(\mathrm{I}+\mathrm{A})^{3}$, where I is the identity matrix
6. If $\mathrm{A}=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]$, find $f(\mathrm{~A})$, where $f(x)=x^{2}-2 x-3$
7. If A and B are symmetric matrices such that AB and BA are both defined, then prove that $\mathrm{AB}-\mathrm{BA}$ is a skew - symmetric matrix.
8. If $\mathrm{A}=\left[\begin{array}{ccc}-3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{array}\right],\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$ then find AB and use it to solve the following system of equations:
$x-2 y=3 ; 2 x-y-z=2 ;-2 y+z=3$.
9. If the function f defined by $f(x)$
$= \begin{cases}3 a x+b, & \text { if } x>1 \\ 11, & \text { if } x=1 \\ 5 a x-2 b, & \text { if } x<1\end{cases}$
$\mathrm{x}=1$, find the values of a and b .
10. If $y=(\sin x)^{x}+(\cos x)^{\tan x}$ find $\frac{d y}{d x}$

